Our program
The multidisciplinary Master's program prepares its students for the challenges they will face as specialists and managers in the digital economy. Recognising patterns in large data sets and gaining valuable insights from them is increasingly becoming a key competence that companies and organisations are eager to acquire. With this in mind, we have designed the multidisciplinary Master's program “MSc in Applied Information and Data Science”. Our students learn how to access, integrate and structure the data they obtain from a wide range of sources. They will learn all the technical, analytical and creative skills that are needed to tackle data problems in the today’s data driven world.

What makes our program unique
➔ Geared for practitioners – to address specific issues in the applied fields
➔ Flexible and individual – to accommodate individual needs
➔ Interdisciplinary – at the interface between technology, analytics, design and management
➔ Open to career changers – from virtually any discipline
➔ International – with a richly varied competency profile

Our challenges
We started our program in fall 2018 and grew quickly from 50 in 2018 to over 300 students in 2021. Right from the beginning on our aim was to supply our students with a professional technical infrastructure. But not only the number of students is a challenge in terms of infrastructure. Also the fact that our students work with big data and use cloud computing to handle industry-related tasks.

Moreover, our students work on master’s thesis projects that require a solid infrastructure to handle the enormous amount of data and specialized software.

Our solution
SWITCHengines was designed for providing “Infrastructure as a Service” with the self provisioning of a large number of compute resources and built for an ever growing need for secure, reliable and fast computation and data storage. HSLU was able to use this infrastructure for a variety of courses and various projects of Master students. The team at SWITCH extended the administrative user interface of SWITCHengines to allow for lecturers to define and deploy individual virtual servers to hundreds of students at the same time, reducing the amount of work to setup, provision and configure individual machines by multiple orders of magnitude. Students received access to individually configured VMs within minutes and had no additional effort in setting them up or configuring them. This reduced support overhead and simplified the process both for students and lecturers.

Further information:
swit.ch/engines