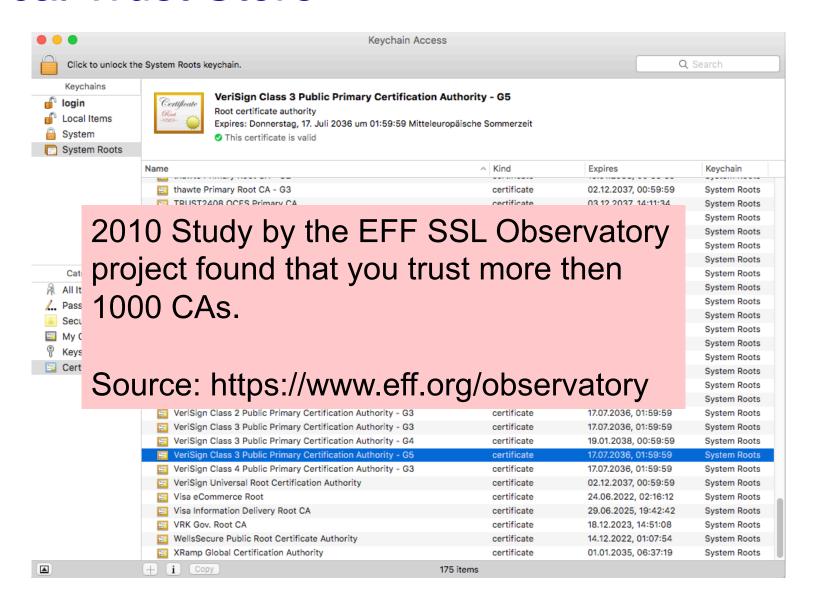


Daniel Stirnimann daniel.stirnimann@switch.ch

Bern, 29. March 2017

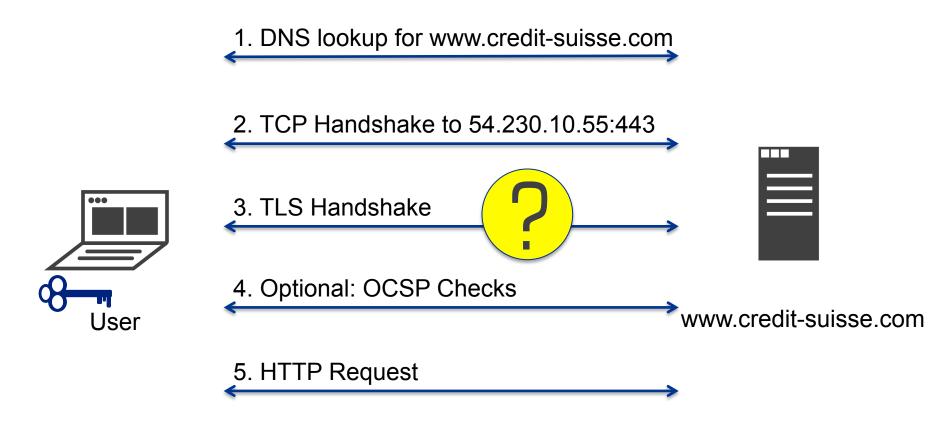


Why do we trust this website?



Why do we trust this website?

Local Trust Store



Broken CA Model

- Any CA can issue certificates for any domain (weakest link)
- CAs have been compromised in the past
- CAs have issued wrong or unauthorized certificates
 - https://sslmate.com/certspotter/failures
 - https://arstechnica.com/security/2017/01/already-on-probationsymantec-issues-more-illegit-https-certificates/
- Domain Validated (DV) certificates are entirely automated
 - Risk of vulnerability in the API
 - A temporary compromise of DNS, email or web can lead to long-term fraudulent certificate
 - CA validated domain ownership over insecure channels such as unauthenticated DNS, insecure HTTP and email

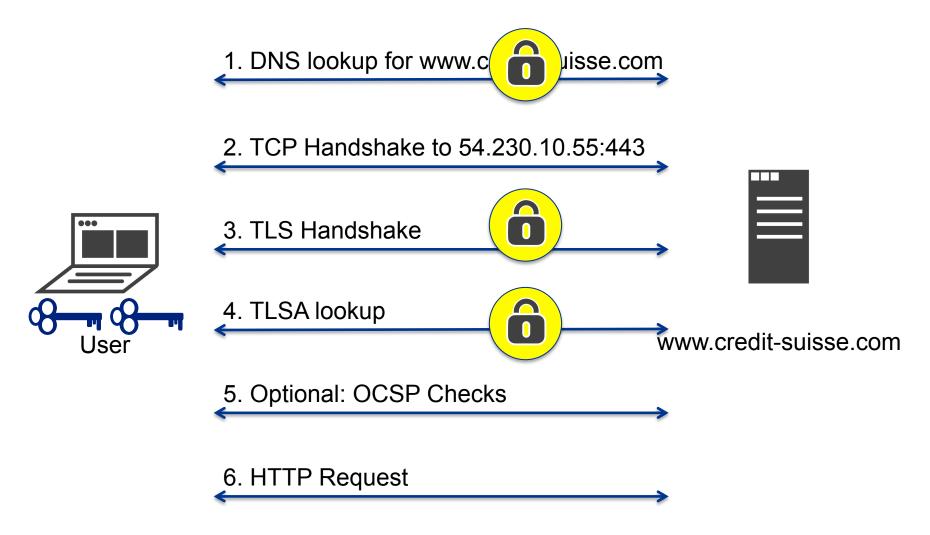
Recap: Why do we trust this website?

DEMO

Solutions 1/2

- DNS Certification Authority Authorization (CAA) RR (RFC 6844)
 - Over insecure unauthenticated DNS! CAA does not mandate DNSSEC (only recommend it)
 - Helps prevent mis-issuance. Does not prevent usage.
 - CAB Forum has decided to make CAA checking mandatory
- Certificate Transparency (certificate-transparency.org)
 - Search and Monitor:
 - https://sslmate.com/certspotter/
 - https://crt.sh/
 - Puts burden on every domain owner to monitor and internally verify every issued certificate. Does help for big companies.
 - Does not prevent mis-issuance. Does not prevent usage. Helps detecting misuse.
 - Note: web browsers will mandate CT logs in the future in order to accept CA issued certificate

Solutions 2/2


- Using the DNS to associated domain name public key certificates with domain name (RFC 6698, RFC 7671)
 - Mandates authenticated (secure) DNS -> DNSSEC

DANE TLSA specifies a protocol for publishing TLS server certificate associations via DNSSEC

With DANE: Why do we trust th

Why do we trust this website?

TLSA Resource Record

Example:

Cert Usage Field:

- 0: PKIX-TA Resigned certificate by PKI in
- 1: PKIX-EE t stores

TLSA Resource Record

Example:

_25._tcp.mail.ex__r (3FE246A 6B6E7CA8E2

Recommended:

 TLSA RR needs no change across renewal of cert if same private key is used

Selector Field:

- 0: Full certificate
- 1: SubjectPublicKey

```
Subject Public Key Info
Subject Public Key Algorithm
Subject's Public Key
```

Certificate Basic Constraints

Extended Key Usage

Field Value

```
Modulus (2048 bits):
b1 e1 37 e8 eb 82 d6 89 fa db f5 c2 4b 77 f0 2c
4a de 72 6e 3e 13 60 d1 a8 66 le c4 ad 3d 32 60
e5 f0 99 b5 f4 7a 7a 48 55 21 ee 0e 39 12 f9 ce
0d ca f5 69 61 c7 04 ed 6e 0f 1d 3b le 50 88 79
3a 0e 31 41 16 f1 b1 02 64 68 a5 cd f5 4a 0a ca
99 96 35 08 c3 7e 27 5d d0 a9 cf f3 e7 28 af 37
d8 b6 7b dd f3 7e ae 6e 97 7f f7 ca 69 4e cc d0
06 df 5d 27 9b 3b 12 e7 e6 fe 08 6b 52 7b 82 11
7c 72 b3 46 eb c1 e8 78 b8 0f cb e1 eb bd 06 44
```


TLSA Resource Record

Example:

```
_25._tcp.mail.example.com. IN TLSA 3 1 1
(3FE246A848798236DD2AB78D39F0651D
6B6E7CA8E2984012EB0A2E1AC8A87B72)
```

Matching Type Field:

```
0: Full
1: SHA2-256
2: SHA2-512
Size issue
Must be supported by all DANE clients
Not recommended
```


TLSA Survey .CH

Zones with TLSA Records: 614

Zones with TLSA Records for MX: 611

Zones with TLSA Recor for Web

Found TLSA Usage Strin

TLSA usage strings 100

TLSA usage string

TLSA usage strings 2

TLSA usage st.

TLSA usage strings

TLSA usage strip

TLSA usage strings 3 1

TLSA usage strings 3 1: 676

TLSA usage strings 3 0 1: 360

govcert.ch antiphishing.ch abuse.ch gmx.ch posteo.ch open.ch switch.ch

...just one Problem

- No web browsers supports DANE out of the box
 - You need a plug-in such as <u>www.dnssec-validator.cz</u>
- Reasons:
 - additional DNS lookups on every connection
 - Non-validating resolvers
 - broken middle-boxes (firewalls)
- This is about to change:
 - draft-shore-tls-dnssec-chain-extension
 - https://bugzilla.mozilla.org/show_bug.cgi?id=672600

DANE for Mail just works

- No usage issues:
 - Typically has a static local resolver (no unexpected middlebox)
 - Latency of an additional DNS lookup is no problem
- DANE for mail provides:
 - Authenticated encrypted connection between SMTP servers
 - Prevents STARTTLS "downgrade" attacks
- It's in use by some big mail providers
- It's required by the BSI "Richtlinie für sicherer E-Mail-Transport"

Home Work

- Turn on DNSSEC validation on your local resolver
 - Guidelines for BIND, unbound, Windows DNS: https://www.surf.nl/en/knowledge-base/2012/white-paper-deploying-dnssec.html
- DNSSEC sign your zone
- Strongly consider enabling DANE for mail
- Plan for using DANE for the web ©

